If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100=29.49x^2
We move all terms to the left:
100-(29.49x^2)=0
We get rid of parentheses
-29.49x^2+100=0
a = -29.49; b = 0; c = +100;
Δ = b2-4ac
Δ = 02-4·(-29.49)·100
Δ = 11796
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11796}=\sqrt{4*2949}=\sqrt{4}*\sqrt{2949}=2\sqrt{2949}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2949}}{2*-29.49}=\frac{0-2\sqrt{2949}}{-58.98} =-\frac{2\sqrt{2949}}{-58.98} =-\frac{\sqrt{2949}}{-29.49} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2949}}{2*-29.49}=\frac{0+2\sqrt{2949}}{-58.98} =\frac{2\sqrt{2949}}{-58.98} =\frac{\sqrt{2949}}{-29.49} $
| -2x-11=x+13 | | 10x+.10=35x | | 1/2x+1/3x(x-6)=5/6x+2 | | 2x-5=5x=15 | | x/8+5=12 | | (g)/(5)+(5)/(6)=6 | | 4-2(x-2)=12 | | 40+15+25x=45+.35x | | 10=4*x^2 | | −16=q−(−11) | | 2x-4÷5=x+4 | | 1÷3(y-7)=2y+6 | | 2.5+1.2x=-3.2 | | 95-(6x+12)=6(x+3)+x | | 4y+3-2y=7 | | 6+-3x=5x+-10x+4 | | 1÷3(y-7=2y+6 | | 3.2+x=-3.2 | | 6x^2+24x-30=-48 | | 6(x-2)+4=68 | | 0.75(12x-4=15x+15 | | -4f+16=4f | | -3x-2x=-10x+1 | | 10^x=100 | | 3x^2+8x=-7 | | k÷2=7×2 | | 5(2x-1)=-1 | | (2j+1)⋅9−7j=0 | | 3p/6+20=22 | | 4/3=m+4/1 | | 30=-2(-2x+6 | | 5y6+56=16 |